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Abstract 

Ibogaine, a putatively anti-addictive alkaloid, binds to K-opioid and NMDA receptors. In the present study we investigated the roles of 
K-opioid and NMDA actions in mediating ibogaine’s (40 mg/kg, i.p.> behavioral and neurochemical effects in rats. A combination of a 
K-opioid antagonist (norbinaltorphimine, 10 mg/kg, s.c.) and a NMDA agonist (NMDA, 20 mg/kg, i.p.> partially prevented 
ibogaine-induced inhibition of intravenous morphine self-administration and ibogaine-induced antagonism of morphine-induced locomo- 
tor stimulation. The combination, as well as norbinaltorphimine and NMDA alone, blocked the acute effects of ibogaine on dopamine 
release and metabolism in the striatum. The data suggest that both K-opioid agonist and NMDA antagonist actions of ibogaine contribute 
to its putative anti-addictive effects. 
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Ibogaine, an alkaloid extracted from Tabemanthe iboga, 
is being studied as a potential long-acting treatment for 
both opioid and stimulant abuse. While there have been 
only anecdotal reports of long-term efficacy in humans, 
e.g., [17], studies in this [4,6] and other [l] laboratories 
have shown that ibogaine can decrease both morphine and 
cocaine self-administration for several days in some rats; 
similar effects are produced by noribogaine, a metabolite 
of ibogaine [5]. Acutely, ibogaine and noribogaine de- 
crease extracellular levels of dopamine in the nucleus 
accumbens and striatum while ibogaine pretreatment (19 h 
beforehand) blocks morphine-induced dopamine release [8] 
and morphine-induced hyperactivity [9,14]. Because both 
ibogaine and its metabolite noribogaine bind to K-opioid, 
e.g., [3,13,16] and NMDA receptors, e.g., [11,15], we have 
been investigating the roles of K-opioid and NMDA mech- 
anisms in mediating ibogaine’s behavioral and neurochem- 
ical effects. The interactions of a K-opioid antagonist 
(nor-binaltorphimine, norBN1) and/or a NMDA agonist 
(iV-methyl-D-aspartic acid, NMDA) with ibogaine were 
assessed in terms of three of ibogaine’s reported effects: 
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inhibition of morphine self-administration [6], inhibition of 
morphine-induced motor stimulation [9,14], and inhibition 
of dopamine (DA) release in the striatum [Xl. The resul: 
of these studies suggest that both K-agonist and NMDA 
antagonist actions of ibogaine and noribogaine contribute 
to, but may not entirely account for, the resultant effects. 

All subjects were naive female Sprague-Dawley 
(Taconic, Germantown, NY) rats, approximately 3 months 
old and weighing 230-250 g at the beginning of an 
experiment. Rats were maintained on a normal light/dark 
cycle (lights on/off at 07.00 h/19.00 h). 

The intravenous self-administration procedure has been 
described previously, e.g., [4,6]. Briefly, responses on 
either of two levers (mounted 1.5 cm apart on the front 
wall of each operant test cage) were recorded on an IBM 
compatible 486 computer with a Med Associates interface. 
The intravenous self-administration system consisted of 
polyethylene-silicone cannulas constructed according to 
the design of Weeks [21], Instech harnesses and commuta- 
tors, and Harvard Apparatus infusion pumps (No. 55- 
2222). Shaping of the bar-press response was initially 
accomplished by training rats to bar-press for water. Can- 
nulas were then implanted in the external jugular vein 
according to procedures described by Weeks [21]. Self-ad- 
ministration testing began with a 16-h nocturnal session 
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followed by daily l-h sessions, 5 days (Monday-Friday) a 
week. A lever-press response produced a 10 pl infusion of 
drug solution (0.01 mg of morphine sulfate) in about 0.2 s. 
Since all rats generally weighed 250 + 20 g, each response 
delivered approximately 0.04 mg/kg of morphine. Experi- 
ments to assess the effects of ibogaine (40 mg/kg, i.p.), 
alone or in combination with a K-antagonist (norbinal- 
torphimine, norBN1; 10 mg/kg, s.c.) and/or a NMDA 
agonist (N-methyl-D-aspartate, NMDA; 20 mg/kg, i.p.), 
were begun when baseline self-administration rates stabi- 
lized (less than 10% variation from one day to the next 
across 5 days), usually after 2 weeks of testing. Each 
treatment was tested in a different group of rats; injections 
were made on Wednesdays. Ibogaine and NMDA were 
administered 15 min before a self-administration session, 
whereas norBN1 was administered 2 h before the same test 
session. 

The effects of the same treatments on morphine-induced 
locomotor stimulation were studied using the same proce- 
dures previously employed with ibogaine alone [ 141. Loco- 
motor activity was assessed using cylindrical photocell 
activity cages (60 cm, three crossing beams) interfaced to 
an IBM-compatible 486 computer. Different groups of rats 
were treated with different combinations of norBN1, 
NMDA, ibogaine or saline (norBN1 administered 1 h prior 
to co-administration of ibogaine and NMDA or saline), 
and 19 h later, injected with morphine sulfate (5 mg/kg, 
i.p.) immediately before being placed into the activity 
cages. Locomotor activity was monitored for 1 h there- 
after. 
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The microdialysis procedures used to assess the effects 
of the same treatments on extracellular levels of dopamine 
and its metabolites in the striatum have been used exten- 
sively in this laboratory, e.g., [4,5,8]. Briefly, under pento- 
barbital anesthesia, rats were implanted stereotaxically with 
guide cannulas over the striatum so that, when inserted, the 
tips of the dialysis probes would be located in the striatum 
(rostral, + 0.5 mm; lateral, f 2.9 mm; ventral, - 7.0 mm) 
[12]. The cannula was fixed firmly in the skull with dental 
cement. 

At least 4 days after surgery, a rat was placed in a 
dialysis chamber, a cylindrical (30 cm diameter) Plexiglas 
cage providing free access to food and water. The probe (3 
mm; CMA 8309563) was then lowered into the guide 
cannula. The dialysis probe was continuously perfused 
with a solution containing 146 mM NaCl, 2.7 mM KCl, 
1.2 mM CaCl, and 1.0 mM MgCl, at a flow rate of 1 
pl/min. On the next morning (15-20 h later), the dialysis 
experiment was carried out on a freely moving animal. 
NorBNI or saline was administered at time 0, and NMDA 
or saline, and ibogaine were co-administered 2 h later. 
Twenty-minute fractions were collected in vials containing 
2 ~1 of 1.1 N perchloric acid solution (containing 5 mg/l 
EDTA and 5 mg/l sodium metabisulfite). Upon comple- 
tion of an experiment, rats were killed and histological 
analysis of each brain was performed to verify the loca- 
tions of the probes. 

Perfusate samples were analyzed by HPLC with electro- 
chemical detection. The HPLC consisted of a Waters pump 
(model 510) a WISP autosampler (model 712) a Phase 
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Fig. 1. Partial antagonism by a combination of NMDA and norBN1 of the effects of ibogaine (IBO, 40 mg/kg, i.p.) on morphine (0.04 mg/kg/infusion) 
self-administration (N = 6 rats/group). lbogaine (40 mg/kg, i.p.) and NMDA (20 mg/kg, i.p.) were administered 15 min before the test session on Day 1 
whereas norBiu’1 (10 mg/kg, s.c.) was administered 2 h before the same test session; the NMDA + norBN1 + IBO gluup was significantly different from 
the other ibogaine groups on Day 1 ( l , P < 0.02; see text). 
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Fig. 2. Effects of norBN1 (10 mg/kg, s.c.) and NMDA (20 mg/kg, i.p.l 
on ibogaine (40 mg/kg, i.p.) antagonism of morphine-induced (5 mg/kg, 
i.p.) locomotor activity (N = 8 rats/group). NorBNI or saline was admin- 
istered 1 h before NMDA and ibogaine (or saline controls). The morphine 
challenge was administered 19 h after ibogaine and/or NMDA. The 
Sal-Sal-Ibo, the Sal-NMDA-IBO and the norBNI-Sal-IBO groups were 
all significantly different ( * , P < 0.05) from the Sal-Sal-Sal group. The 
norBNI-NMDA-IBO group was not significantly different from the Sal- 
Sal-Sal group (P > 0.05). 

Separation Spherisorb C-18 column (S3 ODS2; 10 cm X 
4.6 mm) and a Waters detector (model 464). The mobile 
phase consisted of 6.9 g/l sodium monobasic phosphate, 
450 mg/l heptane sulfonic acid, 80 mg/l disodium EDTA, 
and 110 ml/l methanol; the solution was adjusted with 
HCl to pH 3.7 and was pumped at a rate of 1.2 ml/min. 
Chromatograms were processed using Hewlett-Packard 
HPLC 2D Chem Station software. 

Fig. 1 shows the morphine self-administration results. 
The combination of NMDA and norBN1 significantly an- 
tagonized the effect of ibogaine on Day 1 (significant 
treatment X days interaction, ANOVA, P < 0.01; NMDA 
+ norBN1 + ibogaine significantly different from ibo- 
gaine, NMDA + ibogaine, and norBN1 + ibogaine, P < 
0.02, Newman-Keuls) but not thereafter. Ibogaine alone, 
as well as with NMDA or norBN1, significantly reduced 
morphine self-administration on Days 1 and 2 (P < 0.O.S 
0.001) Not shown are data from rats administered saline 
(i-n place of ibogaine) together with NMDA, norBNI or the 
combination: there was no effect of these treatments alone 
on morphine self-administration. 

Fig. 2 shows the locomotor activity results. Ibogaine 
inhibition of morphine-induced hyperactivity (ANOVA and 
LSD tests, P < 0.05) was partially antagonized by the 
combination of norBN1 and NMDA. The norBNI-NMDA- 
IBO group did not differ (LSD test, P > 0.05) from the 
control group (Sal-Sal-Sal). 

Fig. 3 shows the microdialysis results. The inhibition of 
dopamine release by ibogaine as well as the ibogaine-in- 
duced increases in DOPAC and HVA were antagonized by 
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Fig. 3. Antagonism of ibogaine-induced (40 mg/kg, i.p.1 changes in 
striatal dopamine, DOPAC and HVA by norBNI and/or NMDA. NorBNI 
(10 mg/kg, s.c.) or saline was administered at time 0 and NMDA (10 
mg/kg, i.p.) or saline, and ibogaine (40 mg/kg, i.p.) were co-adminis- 
tered 2 h later (N = 6 for the norBNI-NMDA-IBO group and 4 for a11 
other groups). The combination of norBN1 + NMDA as well as each drug 
alone significantly (P < 0.05) attenuated the decrease in dopamine (A) 
and the increase in DOPAC (B); the combination of norBN1 + NMDA as 
well as NMDA alone significantly (P < 0.05) attenuated the increase in 
HVA (Cl. 
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the combination of norBNI and NMDA as well as bv each 
drug alone (ANOVA, P < 0.05). Although not significant 
from either drug alone, the combination of norBN1 and 
NMDA appeared to be the most effective antagonist of 
ibogaine. 

and harmaline congeners based on radioligand binding studies, 
Brain Res., 571 (1992) 242-247. 

[41 Glick, S.D., Kuehne, M.E., Raucci, J., Wilson, T.E., Larson, T.D., 
Keller, R.W. and Carlson, J.N., Effects of iboga alkaloids on 
morphine and cocaine self-administration in rats: relationship to 
tremoigenic effects and to effects on dopamine release in nucleus 
accumbens and striatum, Brain Res., 657 (1994) 14-22. 

[5] Glick, SD., Pearl, SM., Cai, J. and Maisonneuve, I.M., Ibogaine-like 
effects of noribogaine in rats, Brain Res., 713 (1996) 294-297. 

[61 Glick, SD., Rossman, K., Steindorf, S. and Carlson, J.N., Effects 
and aftereffects of ibogaine on morphine self-administration in rats, 
Eur. J. Phamtacol., 195 (1991) 341-345. 

[7] Hough, L.B., Pearl, S.M. and Glick, SD., Tissue distribution of 
ibogaine after intraperitoneal and subcutaneous administration, Life 
Sci., 58 (1996) PL 119-122. 

All of these data together indicate that both K-opioid 
agonist and NMDA antagonist actions of ibogaine con- 
tribute to its putative anti-addictive effects. However, the 
antagonism of ibogaine by the combination of norBN1 and 
NMDA in the behavioral studies was sometimes incom- 
plete, suggesting that another (i.e., a third) mechanism 
(e.g., serotoninergic) [lo] may be involved, or the dose of 
norBN1 and/or NMDA may not have been optimal. With 
regard to the morphine self-administration data in particu- 
lar, ibogaine and/or noribogaine or another active metabo- 
lite may have been present at a time (i.e., Day 2) when part 
of the combined treatment (i.e., NMDA) was no longer 
present. 

Both K-agonists and NMDA antagonists have been 
reported to decrease dopamine release in the nucleus ac- 
cumbens. Because their sites of action are different their 
effects may be additive. K-Agonists exert their inhibitory 
action in the nucleus accumbens, possibly by interacting 
with K-opioid receptors located on dopaminergic terminals 
[19], while NMDA antagonists block the excitatory tonic 
control that glutamate exerts on dopamine neurons in the 
ventral tegmental area [20]. In addition, cortical gluta- 
matergic neurons may be under K-opioid inhibition [2,18], 
possibly increasing the efficacy of the combined actions. It 
appears that the combination of these actions confers 
ibogaine with a somewhat unique pharmacological profile. 
Together with data showing that ibogaine is sequestered in 
fat [7], the present data are consistent with the hypothesis 
that ibogaine’s long-term effects may be mediated by slow 
release from fat tissue, conversion to noribogaine, and 
binding of both ibogaine and noribogaine to K-opioid and 
NMDA receptors. 
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