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Abstract There is increasing evidence that the reward- 
ing effect of nicotine is mediated by the mesolimbic 
dopamine system. The first objective of this study was 
to examine the dopamine response to repeated IV infu- 
sions of nicotine. Using in vivo microdialysis in awake 
and freely moving male Sprague-Dawley rats, we 
demonstrated that IV nicotine infusions (0.16 mg/kg 
or 0.32 mg/kg per infusion) produced increases in 
extracellular dopamine levels that were dose- and infu- 
sion order-dependent. Acute tolerance was evidenced 
by the smaller dopamine response produced by a sec- 
ond infusion of nicotine, administered 1 h after the first 
one. Tolerance was reversible, since the dopamine 
response to a second infusion of nicotine was 
unchanged when the interval between the infusions was 
increased to 3 h. Ibogaine, an alkaloid found in 
Tuber-nunthe ibogq is claimed to decrease smoking and 
to have an anti-nicotinic action. The second objective 
of this study was to establish whether this claim has 
any neurochemical basis. Pretreatment with ibogaine 
(40 mgl kg, IP) 19 h prior to the first nicotine infusion 
(0.32 mg/kg per infusion) significantly attenuated the 
increase in extracellular dopamine levels induced by the 
nicotine infusions, suggesting that ibogaine may 
decrease the rewarding effect of nicotine. 
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Introduction 

There is increasing evidence that the rewarding effect 
of nicotine is mediated by the mesolimbic dopaminer- 

1.M. Maisonneuve (p4) S.D. Glick G.L. Mann. C.R. Deibel 
Department of Pharmacology and Neuroscience A-136, 
/\lbany Medical College, 47 New Scotland Avenue, 
,Ilbany, NY !2208. USA 

gic pathway, which originates in the ventral tegmental 
area and innervates the nucleus accumbens. Studies 
indicate that nicotine has the ability to activate the 
mesolimbic dopaminergic neurons: increases in 
dopaminergic neuronal firing rate (Grenhoff et al. 
1986), dopamine synthesis (Carr et al. 1989) and 
dopamine release (Imperato et al. 1986) have been 
reported after acute systemic nicotine administration. 
Nicotine self-administration is reduced when release of 
dopamine is either ineffective (i.e., after administration 
of dopamine receptor antagonists) or absent (i.e.. 
60HDA lesions of the mesolimbic dopaminergic sys- 
tem) (Corrigall and Coen 1991; Corrigall et al. 1992). 
However, study of the rewarding effects of nicotine may 
be complicated by the fact that nicotine interacts with 
nicotinic cholinergic receptors which have been found 
readily to desensitize by chronic exposure to nicotine. 
both in vitro (Bullock et al. 1994) and in vivo (Benwell 
et al. 1995). The first objectives of this study were to 
examine the dopamine response to repeated IV infu- 
sions of nicotine and to ascertain whether acute toler- 
ance could be observed in vivo. 

Ibogaine, an alkaloid found in Tuberncrnthe ibogu, is 
claimed to be effective in interrupting opiate, cocaine 
and alcohol dependence disorders (Lotsof 1985, 1986, 
1989). Preclinical studies in this and other laboratories 
have shown that ibogaine can reduce self-administra- 
tion of morphine and cocaine in rats (Cappendijk and 
Dzoljic 1993; Glick et al. 1994). In addition, ibogaine 
alters morphine- and cocaine-induced dopamine release 
in the mesolimbic pathway (Maisonneuve et al. 1991; 
Maisonneuve and Glick 1992). Ibogaine is also claimed 
to decrease smoking (Lotsof 1991) and to have an anti- 
nicotinic action. A recent study (Benwell et al. 1996) 
reported that ibogaine decreases nicotine-induced 
dopamine release. Unfortunately, dilution of ibogaine 
in ethanol may have confounded the reported findings. 
It is known that both ibogaine and ethanol interact 
with NMDA receptors (Popik et al. 1994; Chu et al. 
1995) and interactions between ethanol and nicotine 
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have already been reported (Blomqvist et al. 1993; 
Lapin et al. 1995). The second objective of this study 
was therefore to reexamine whether the anti-nicotinic 
claim attributed to ibogaine has any neurochemical 
basis. 

Materials and methods 

Chemicals 

Nicotine hydrogen bitartrate and mecamylamine HCI were obtained 
from Sigma (St Louis, MO., USA) and dissolved in saline. The pH 
ofthe nicotine solution was adjusted to pH 7.0 with a small amount 
of 10 M NaOH. The doses of nicotine are expressed as the free 
base: a 250 g rat received either 40 pg or 80 pg nicotine when infused 
with either the “low” or “high” dose. respectively. These doses of 
nicotine, administered as boli, would be convulsive; however, in our 
study these doses were administered as slow infusions and did not 
produce seizures. During the infusion of nicotine, tolerance and to 
a lesser extent elimination may have reduced the convulsive effect 
of nicotine: tolerance has been demonstrated to occur within min- 
utes and possibly seconds (Bullock et al. 1994; Lester and Dani 
1995). and elimination would began as soon as nicotine enters the 
blood compartment. Although we did not measure nicotine plasma 
concentration ourselves. according to Miller et al. (1977) and 
Plowchalk et al. (1992), the lower nicotine dose should lead to 
plasma levels peaking around 55-60 rig/ml at the end of the infu- 
sion: this is about one and a half times the levels observed in smok- 
ers (Gupta et al. 1995). Ibogaine HCI was purchased from RBI 
(Natlck. Mass., USA) and dissolved in sterile water at a concen- 
tratlon of IO mg/ml. 

Surgical procedure 

For all animal experiments the “Principles of laboratory animal 
care” (NIH publication No. 85-23. revised 1985) were followed. 
Under pentobarbital anesthesia (50 mg/kg, IP) male Sprague- 
Dawlcy rats (250 -300 g) had their external jugular vein catheter- 
ized with a polyethylene-silicone catheter and one guide cannula 
was implanted stereotaxically over the nucleus accumbens. The 
coordinates were chosen such that. when inserted, the tips of the 
dialysis probes were located in the medial portion of the shell area 
of the nucleus accumbens: AP, + 1.6 mm and L, _+ 0.7 mm with 
respect to bregma, V. -8.6 mm from the surface of the skull 
(Paxinos and Watson 1986). The ammals were allowed to recover 
from surgery for 4 days. 

Ibogaine pretreatment 

Rats were pretreated with ibogaine (40 mg/kg, IP) I9 h prior to the 
first infusion of nicotine (0.32 mg/kg per infusion). This dose and 
pretreatment interval has been reported to disrupt morphine and 
cocaine self-administration (Glick et al. 1991, 1994; Cappendijk and 
Dzoljic 1993) and to alter morphine-, cocaine- and ci-amphetamine- 
induced dopaminergic effects (Maisonneuve et al. 1991, 1992; 
Maisonneuve and GIick 1992). 

In vivo microdialysis experiment 

The night before the dialysis experiment, the rat was placed in a 
chamber with free access to food and water. With the rat briefly 
anesthetized with Brevital (0.05 ml IV), a dialysis probe (Carnegie 

Medicin probe: 2 mm) was inserted through the guide cannula. 
Artificial CSF containing 146 mM NaCI, 2.7 mM KCI, 1.2 mM 
CaCll and I .O mM MgCl2 was delivered by a Harvard syringe pump 
at a flow rate of I pl/min. Collect!on of perfusate began the next 
day. Fifteen-minute fractions were collected in vials containing 
1.5 11 1.1 M perchloric acid solution (containing 50 mg/l EDTA 
and 50 mg/l sodium metabisulfite). Before the end of the sixth base- 
line sample the catheter was primed (25 pl in 2 min). At the begin- 
ning of the seventh sampling period the rats received 5-min IV 
infusion of nicotine (0.16 or 0.32 mg/kg per infusion, expressed as 
free base). One or 3 h later they received a second identical infu- 
sion. The collection of dialysate samples was stopped I h after the 
last infusion. To confirm the nicotinic specificity of the response, a 
group of rats received mecamylamine (5 mg/kg, IP) 30 min prior 
to the first infusion of nicotine. Upon completion of an experiment, 
the catheter’s functional status was assessed by IV injection of 
0.05 ml Brevital. The rats were then killed by an overdose of pen- 
tobarbital. Brains were removed and frozen, and 50 pm coronal 
sections were sliced in a cryostat. The tracks left by the probes were 
identified and their exact positions determined by reference to the 
Paxinos and Watson atlas (1986). Strict criteria were applied to 
determine whether the locations of the probes were acceptable or 
not: the tracks were not to be visible at the bottom of the brain, 
and had to be within a third of the distance separating two easily 
recognizable landmarks: the midline and the anterior commissure. 
Only the dialysates of animals whose tracks were in the correct loca- 
tions were analyzed. 

Catecholamine assay 

Dialysate samples were assayed for dopamine by HPLC with elec- 
trochemical detection. The HPLC system consisted of a Waters 712 
Wisp autosampler, a Waters 510 solvent delivery system, it 
Spherisorb C18 column and a Waters 464 electrochemical detector 
with a working electrode set at a potential of 0.79 V with respect 
to a silver-silver chloride reference electrode. The mobile phase con- 
sisting of 6.9 g/l sodium monobasic phosphate, 500 560 mg/l hep- 
tane sulfonic acid, 100 mg/l disodium EDTA and 120 ml/l 
methanol, was adjusted with NC1 to pH 3.6 and was pumped at a 
rate of 1.2 ml/min. Chromatograms were integrated, compared to 
standards and analyzed using Hewlett-Packard ChemStation soft- 
ware 

Statistical analysis 

The data, expressed as percent of baseline, were analyzed using 
analysis of variance (ANOVA) with repeated measures followed by 
Newman-Keuls tests for post-hoc comparisons when necessary. 
Control rats, which received a saline injection either 19 h or 30 min 
prior to the first infusion of nicotine (0.32 mg/kg per infusion), or 

no pretreatment showed similar effects, and their data were pooled 
for all subsequent analyses. 

Results 

DA, DOPAC, and HVA basal extracellular levels 

Two-way ANOVAs with repeated measures (groups, 
six basal values expressed as picomol/ 10 ~1) showed 
that basal levels of dopamine, dihydroxypheny- 
lacetic acid (DOPAC), and homovanillic acid (HVA) 
were not different from one group to another. For all 
groups pooled, these extracellular levels were in 
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picomol/lO ~1 f SEM: for dopamine, 0.0126 f 0.0009, 
for DOPAC, 8.115 + 0.666, for HVA, 3.366 f. 0.353. 

Effects of nicotine on extracellular dopamine levels 

EfSEcts of two nicotine concentrations (Fig. I) 

A three-way ANOVA with two repeated measures 
(nicotine doses, four time points for two infusion peri- 
ods) revealed that nicotine increased extracellular 
dopamine levels in a dose-dependent manner [dose 
F(l, 11) = 10.006, P < 0.0091; the effects of the first and 
second infusions were different [infusion effect, 
F( 1, 11) = 19.272, P < O.OOl]. Further analysis of the 
main effect of dose determined that the changes in 
dopamine levels induced by the two doses were 
markedly different during the first 15 min of the first 
infusion period (Newman-Keuls tests: P < 0.00015). 

Nicotine also increased extracellular levels of 
DOPAC and HVA, but in a non-dose-dependent man- 
ner. However, the increases induced by the second infu- 
sion were of smaller amplitude than the ones induced 
by the first infusion [infusion x time interaction for 
DOPAC, F(3, 33) = 8.19, P < 0.0003; for HVA, F(3, 
33) = 3.95675, P < 0.0161. 

In addition, rats which received two 5-min IV saline 
infusions, 1 h apart, showed no changes in dopamine, 
DOPAC and HVA levels (data not shown). 

QCects of’mecumylamine pretreatment 

Mecamylamine, a nicotinic antagonist, injected IP 
30 min prior to the first infusion, completely abolished 
the dopamine (Fig. 2), DOPAC and HVA responses 
(Fig. 3) induced by nicotine (0.32 mg/kg per infusion) 
[treatment x time interaction, for dopamine, F(7, 70) 
= 3.68, P < 0.0019; for DOPAC, F(7, 70) = 10.83, 

u 0.16 mg/kgAnfusion 
--+- 0.32 mg/kg/infusion 

J 
-60 0 60 

Time (minutes) 

Fig. 1 Extracellular dopamine levels, means 2 SEM, expressed as 
percent of basal values, before and after two 5-min IV infusions 01 

nicotine at time 0 and 60 min. (n = 6 for 0.16 mg/kg per infusion 
and 7 for 0.32 mg/kg per infusion) 
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-o-Control 
- Mecamylamine 

I 

80 0 60 

Time (minutes) 

Fig. 2 Effects of mecamylamme (5 mg/kg, IP, II = 5), administered 
30 min prior to the first nicotine infusion, on extracellular dopamine 
levels (means ? SEM). All rats received two nicotine infusions 
(0.32 mg/kg per infusion) 
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Fig. 3 Effects of mecamylamine (5 mg/kp. IP, II = 5), administered 
30 min prior to the first nicotine infusIon. on extracellular DOPAC 
and HVA levels (means + SEM). All rats received two nicotine infu- 
sions (0.32 mg/kg per infusion) 

P < 0.00001; for HVA F(7. 70) = 8.73, P < O.OOOOl]. In 
fact, in all mecamylamine-treated rats none of the data 
points following nicotine infusions was different from 
the corresponding basal values. 

I$ects of’increusing the iuterwl hrtl\ven nicotil?e 
injkions (Fig. 4) 

In one group of rats the interval between the two nico- 
tine infusions (0.32 mg/kg per infusion) was length- 
ened to 3 h. The effects on extracellular dopamine levels 
observed in the hour following the start of each infu- 
sion were compared with the effects observed during 
the corresponding period in l-h interval infused rats 
(0.32 mg/kg per infusion). Increasing the interval 
between infusions changed the etrects produced [treat- 
ment x infusion interaction, F(l, 10) = 5.13, P < 
0.0471. Newman-Keuls tests demonstrated that the 
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Fig. 4 Extracellular dopamine levels. means If: SEM, expressed as 
percent of basal values, before and after two 5-min IV infusions of 
nicotine at time 0 and 180 min (n = 5) 

effects produced by the second infusion were 
significantly different between the two regimens 
(P < O.OOlS), while there was no difference in the 
responses to the first infusion. In addition, the effects 
produced by the first and second infusions in the 3-h 
interval group were not different from each other 
(P < 0.85). 

Eflects of ibogaine on nicotine-induced dopamine 
changes 

A three-way ANOVA with two repeated measures 
(nicotine doses, four time points for two infusion peri- 
ods) revealed that ibogaine pretreatment attenuated the 
increase in extracellular dopamine levels induced by 
nicotine infusions [treatment x time interaction, F(3, 
36) = 5.39, P < 0.0041 without preventing acute toler- 
ance [infusion effect, F( 1, 12) = 25.94, P < 0.00027 and 
no significant treatment x infusion interaction]; the 
effects induced by the first infusion were still 
significantly greater than the ones induced by the sec- 
ond infusion [Newman-Keuls tests, P < 0.011 even 
though the effects of both infusions were markedly 
attenuated (Fig. 5). 

In addition, in ibogaine-pretreated rats, the increases 
in dopamine metabolites produced by nicotine infu- 
sions tended to be of smaller amplitude [treatment 
effect, for DOPAC, P < 0.078, for HVA, P < 0.11) than 
in control rats (Figs. 6 and 7). 

Discussion 

As already reported by other laboratories (Damsma 
et al. 1989; Braze11 et al. 1990; Benwell and Balfour 
1992), nicotine, administered systemically, induces 
an increase in extracellular dopamine levels in the 
nucleus accumbens. This effect appears to be receptor 

-+-Control 
u lbogaine 

-60 0 60 

Time (minutes) 

Fig. 5 EtTects of ibogaine (40 mg/kg, IP, II = 7) administered 19 h 
prior to the first nicotine infusion, on extracellular dopamine lev- 
els (means + SEM). All rats received two nicotine infusions 
(0.32 mg/kg per infusion) 

160- 

J 
-60 0 60 

Time (minutes) 

Fig. 6 Erects of ibogaine (40 mg/kg, IP, 11 = 7) administered 19 h 
prior to the first nicotine infusion, on extracellular DOPAC levels 
(means & SEM). All rats received two nicotine infusions 
(0.32 mg/kg per infusion) 

160, T 

loo- 

J 
-60 0 60 

Time (minutes) 

Fig. 7 Effects of ibogaine (40 mg/kg, IP, n = 7) administered 19 h 
prior to the first nicotine infusion, on extracellular HVA levels 
(means ? SEM). All rats received two nicotine infusions 
(0.32 mg/kg per infusion) 
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mediated, since the increase is prevented by prior treat- 
ment with mecamylamine, a moderately selective cen- 
tral and peripheral nicotinic receptor antagonist. In the 
nucleus accumbens and ventral tegmental area, 
30-40% of nicotinic receptors are located on dopamin- 
ergic neurons (Clarke and Pert 1985). Nicotine can 
interact with nicotinic receptors located on both cell 
bodies and terminals to enhance dopamine release 
(Mifsud et al. 1989; Nisell et al. 1994); however, the 
dominant effect of nicotine has been reported by a num- 
ber of laboratories to occur via an action in the ven- 
tral tegmental area (Yoshida et al. 1993; Corrigall et 
al. 1994; Nisell et al. 1994). It is noteworthy that 
increases in the dopamine metabolites, DOPAC and 
HVA, have been observed after local infusion of nico- 
tine into the ventral tegmental area but not into the 
nucleus accumbens (Nisell et al. 1994). A difference in 
the distribution of various possible subunits of the nico- 
tinic channel in the mesolimbic dopaminergic neurons 
might account for regional variations in the response 
to nicotine. Each combination of subunits appears 
to display unique pharmacological and electrophysio- 
logical properties (Deneris et al. 1991). In addition, 
activation of nicotinic receptors located on non- 
dopaminergic neurons, either in the nucleus accumbens 
or in the ventral tegmental area, may indirectly affect 
dopaminergic activity. For example, nicotine has been 
demonstrated to interact with presynaptic receptors to 
enhance the release of excitatory amino acids 
(McGehee et al. 1995). Also, nicotine induced cT/i).s 
expression in the dorsal and ventral striatum is depen- 
dent on NMDA stimulation (Kiba and Jayaraman 
1994). Excitatory amino acids. such as glutamate. exert 
a facilitatory influence on nucleus accumbens 
dopamine release by actions in both the terminal region 
(Ohno and Watanabe 1995) and the cell body area 
(Wang et al. 1994). Therefore it can be postulated that 
nicotine modulates dopamine release partially via its 
action on glutamatergic neurons. The high dose of 
mecamylamine used in this study may have prevented 
such a putative interaction (Clarke et al. 1994). 

By administering nicotine IV we were able to demon- 
strate that, in vivo, nicotine induces an acute and 
reversible tolerance to its effects on dopamine release. 
The lack of acute tolerance reported by Damsma et al. 
(1989) may have been attributable to the long interin- 
jection interval together with the SC route of admin- 
istration. The most likely explanation for the observed 
acute tolerance is that nicotinic receptors desensitize 
quickly after exposure to agonists (Ochoa et al. 1989; 
Grady et al. 1994). In vitro, nicotine receptor desensi- 
tization occurs within minutes at concentrations com- 
patible with the estimated concentration range in the 
brains of smokers (0. l- 1 FM) (Marley 1988; Bullock 
et al. 1994); desensitization is dose-dependent below 
10 FM (Boksa and Livett 1984). In this study it is likely 
that desensitization began before the end of the first 
nicotine infusion and was greater after the higher dose. 

This would explain why dopamine release peaked 
sooner (in the first 15 min) after the higher dose of 
nicotine and later (15-30 min) after the lower dose. 
The reversibility of the desensitization phenomenon 
coincides with the removal of the drug. The elimina- 
tion rate of IV nicotine in rats is about 1 h (Plowchalk 
et al. 1992), and the concentration of nicotine, 3 h after 
an IV infusion, should be about 10% of the initial con- 
centration. Acute tolerance of the locomotor hyperac- 
tivity induced by repeated administration of nicotine 
has been reported to be reversible (Hakan and Ksir 
1991). 

Ibogaine has been claimed to be effective in the treat- 
ment of nicotine dependence (Lotsof 1991) as well as 
opiate, stimulant and alcohol dependence (Lotsof 1985, 
1986, 1989). Preclinical studies have shown that ibo- 
gaine reduces self-administration of morphine and 
cocaine (Glick et al. 1991, 1994; Cappendijk and 
Dzoljic 1993) and alters the accumbal dopamine 
increases that have been linked to their rewarding effects 
(Maisonneuve et al. 199 1; Maisonneuve and Glick 
1992). Extending these earlier studies, our present 
results indicate that ibogaine blocks the dopamine 
increases induced by nicotine administration as well. 
Our results corroborate the report of Benwell et al. 
(1996), except for the effects on the dopamine metabo- 
lite, DOPAC. In our study the increases in DOPAC 
induced by nicotine were attenuated by ibogaine pre- 
treatment, while they were enhanced in Benwell et al.‘s 
report. Possibly, methodological differences, such as the 
schedule of nicotine administration, dilferences in 
probe implantation protocols or ibogaine solution 
preparation (dilution in water versus in ethanol). could 
explain the divergence of results. It is interesting to note 
that ibogaine attenuates the dopamine increases 
induced by drugs acting preferentially at the cell body 
area, such as morphine (Maisonneuve et al. 199 1) and 
nicotine (Benwell et al. 1996; this report), and enhances 
the dopamine responses of drugs acting at the termi- 
nal regions, such as cocaine (Maisonneuve and Glick 
1992) and (f-amphetamine (Maisonneuve et al. 1992). 

The mechanism(s) by which ibogaine blocked the 
dopaminergic response to nicotine is unknown, but sev- 
eral sites of action can be hypothesized. The reported 
interaction of ibogaine with kappa opioid receptors 
(Deecher et al. 1992; Sweetnam et al. 1995) could 
influence nicotine’s effects. Activation of kappa opioid 
receptors by U50,488 or by endogenous dynorphin pep- 
tides has been demonstrated to inhibit nicotine-induced 
Ca2+ uptake (Bunn and Dunkley 1991) as well as cat- 
echolamine secretion (Kumakura et al. 1980) in cul- 
tured bovine adrenal medullary cells. 

Ibogaine interacts with the NMDA ion channel site, 
as shown by its ability to displace MK-801 binding, a 
non-competitive antagonist of NMDA receptors 
(Popik et al. 1994; Sweetnam et al. 1995; Chen et al. 
1996). Ibogaine can therefore block the ionic perme- 
abilit; of the NMDA receptors and antagonize the 
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effects of NMDA agonists, such as glutamate, as well 
as any effects of nicotine mediated indirectly via 
NMDA receptors. The non-competitive NMDA anta- 
gonist, MK-801, increases A 10 dopamine neuron burst 
firing rate (French et al. 1993) and the release of 
dopamine in the nucleus accumbens (Taber and Fibiger 
1995). Although these effects would indicate a likely 
potentiation of nicotinic effects, MK-801 has been 
demonstrated to inhibit c-Fos expression induced by 
acute nicotine (Kiba and Jayaraman 1994). 

The action of ibogaine as a non-competitive blocker 
of NMDA channels suggests that it might have an ana- 
logous action at nicotinic receptors. Nicotinic and 
NMDA ion channels share several structural, molecu- 
lar, functional and pharmacological properties. MK- 
801, a NMDA antagonist, blocks nicotinic receptors 
(Ramoa et al. 1990; Briggs and McKenna 1996) and 
mecamylamine, a nicotinic antagonist, blocks NMDA 
receptors (O’Dell and Christensen 1988); these two 
molecules are open channel blockers (Varanda et al. 
1985; Javitt and Zukin 1989; Banerjee et al. 1990). It 
is possible that ibogaine exerts its antinicotinic effects 
directly by blocking the nicotinic open channel. Earlier 
studies which had reported that ibogaine did not inter- 
act with nicotinic receptors had used a ligand 
([‘H]methylcarbamylcholine) that binds to the nicotinic 
site and is not a non-competitive blocker (Deecher 
et al. 1992). In support of this hypothesis, both ibo- 
gaine and mecamylamine decreased the dopamine, 
DOPAC and HVA responses to nicotine, although 
the effects of mecamylamine were greater than those 
of ibogaine. These differences could be simply due 
to differences in dosage. Additional actions of ibo- 
gaine which affect primarily the release of dopamine 
(i.e., kappa opioid activation) could explain the greater 
ability of ibogaine to affect the nicotine induced 
increase in dopamine as compared to DOPAC and 
HVA. 

In the present study, inhibition of nicotinic effects by 
ibogaine occurred 19 h after its administration. 
Although ibogaine has a reported half-life of 1 h in 
rodents (Dhahir 1971), this prolonged effect of ibogaine 
is not surprising. Pharmacologically active concentra- 
tions of ibogaine (Glick et al. 1993) have been detected 
in plasma and brain a day after its administration 
(Gallagher et al. 1995). Ibogaine, due to its lipophilic 
nature, concentrates in fat where it could be slowly 
released in the systemic circulation, maintaining pro- 
longed low levels of ibogaine (Hough et al. 1996). In 
addition, recent evidence suggests that the primary 
metabolite of ibogaine, noribogaine, persists in the 
plasma for more than a day (Mash et al. 1995a) and 
shares several of ibogaine’s biochemical actions (Mash 
et al. 1995b; Pearl et al. 1995). 

Further studies are warranted to explore possible 
mechanisms of the ibogaine-nicotine interaction as well 
as to determine the effects of ibogaine after chronic 
administration of nicotine. 
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