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Microwave assisted Diels–Alder cycloaddition of 5-Br-N-benzylpyridinone (2) with methyl
acrylate is described to gain an easy access to 7-bromo-2-benzyl-3-oxo-2-aza-5 or 6-
carbomethoxy bicyclo[2.2.2]oct-7-enes (3)–(6). The preparation of the ibogaine analogue
20-desethyl-(20-endo)-hydroxymethyl-11-demethoxyibogaine (17) is described by stereoselective
hydrogenation of the C(7)–C(8) double bond. Biological evaluation showed an interesting
in vitro binding profile toward dopamine transporter, serotonin transporter and opioid
receptor systems accompanied by an antiwithdrawal effect in mice for hydroxymethyl 7-indo-
lyl-2-aza-bicyclo[2.2.2]oct-2-ene (14). The simplification of the ibogaine structure appears as a
promising approach toward the design of compounds that could reduce the withdrawal
symptoms.
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1. Introduction

The iboga alkaloids [1] not only present a challenge to synthetic chemists but are also
the starting point for intriguing pharmacological adventures. In particular this was the
case of ibogaine (1, figure 1), a compound used by African natives for its hunger-
combating effects, as well as to generate a euphoric state in ritual ceremonies.
Anecdotal and clinical reports suggest that a single dose of ibogaine given to subjects
dependent on opioids or cocaine has the capacity to abolish or minimize withdrawal
symptoms, as well as to decrease or revoke drug craving for extended periods [2].
Since the pharmacological profile of ibogaine is not related to a specific receptor, the
synthesis of structures resembling the indoloazepine–isoquinuclidine ring system is
desirable.

We have recently shown that a quality collection of 7-heteroaryl-2-azabicyclo
[2.2.2]oct-7-ene derivatives [3] can be obtained in a two-step procedure by cycloaddition
of 5-Br-N-benzylpyridinone (2) with methyl acrylate and subsequent cross-coupling with
an activated heteroaromatic derivative. The radioligand binding assays demonstrated
the possibility to approach the receptorial affinity of ibogaine even with some of these
structurally simplified analogues containing the substituted isoquinuclidyl nucleus.

In continuing our efforts to synthesize analogues of iboga alkaloids, we report
here on the synthesis of 20-desethyl-(20-endo)-hydroxymethyl-11-demethoxybogaine
(17) whose crucial step is the stereoselective hydrogenation of the C(7)–C(8) double
bond of the 2-benzyl-7-[1-indol-2-yl]-(6-endo)-hydroxymethyl-2-aza-bicyclo[2.2.2]
oct-7-ene (11) followed by bridging of the N(2) to position 3 of the indole moiety to
form the azepine ring. Biological tests revealed a binding profile for compound 14,
very similar to that of ibogaine, and an interesting in vivo activity.

2. Results and discussion

The first step of our work was to develop an improved procedure for the preparation
of the 7-bromo-2-benzyl-3-oxo-2-aza-5 or 6-carbomethoxy bicyclo [2.2.2]oct-7-enes
(3)–(6) by cycloaddition of 5-Br-N-benzylpyridinone (2) (scheme 1) with methyl
acrylate. This cycloaddition has been previously [3] performed by heating a solution
of 2 and methyl acrylate (in 1 : 22 ratio) in a closed vessel at 120�C for 10 days, resulting
in the formation of a mixture of 3–6 with an 84% yield. This procedure was not satis-
factory due to the long reaction time and the troubles with purification caused by the
polymerization of methyl acrylate. To overcome these difficulties we thought that the
application of microwave (MW) assisted organic chemistry could be of help [4].
We started to study the MW assisted reaction by irradiation at 150�C of the same
mixture as in the thermal procedure, but after 6 h (table 1) only a low conversion to
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Figure 1. Ibogaine.
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3–6 (11%) was obtained. This result could not be improved by prolonging the irradia-
tion or changing the substrate/acrylate ratio, or the solvent. Only in the case of the use
of toluene containing 10% of the ionic liquid [5] (1-butyl-3-methylimidazolium
hexafluorophosphate, BMIMPF6), a more acceptable transformation (45%) was
detected after 6 h [6].

A substantial improvement in the conversion was obtained by carrying out the
reaction under solvent-free conditions, by impregnating reagents on solid mineral
supports in ‘‘dry media’’ [7]. Using montmorrilonite and MgSO4 as solid supports
methyl acrylate polymerization was the predominant result. Also unsatisfactory was
the use of SiO2. The solid support of choice was neutral Al2O3, which gave a 45%
total yield after 6 h that could be increased to 60% by prolonging the irradiation to
14 h [8]. No appreciable polymerization of methyl acrylate was observed, thus allowing
an easy manipulation of the products’ mixture. No differences in the regio- and
diastereoselectivity of the reaction products was observed as compared with conven-
tional heating (scheme 1). Compounds 3–6 could be obtained as pure products only
in small amounts, whereas in preparative scale they were obtained as a mixture of
3, 6 and 5, 4. The four isomers were easily distinguishable by NMR spectroscopy [3].

Having produced the carbomethoxy azabicyclo octenes 3–6, the next step was the
construction of the pentacyclic skeleton of iboga alkaloids. This could be achieved
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Scheme 1. Composition of the mixture obtained by MW assisted Diels–Alder reaction.

Table 1. MW assisted Diels–Alder reaction (150�C) of 2
and methyl acrylate.

Conversion (%)

Reaction medium 90min 6 h 14 h

CH2Cl2 – 11 –
BMIMPF6

a 10.5 45 –
Montmorr. 20 polym –
MgSO4 20 polym –
SiO2 20.5 21 –
Al2O3 bas 18.9 17 –
Al2O3 aci. 20 polym –
Al2O3 ne 10 45 60

No MW 120�C sealed tube [3]

CH2Cl2 84 (after 10 days)

a 10% in toluene.
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by coupling of 3–6 with in situ generated 2-indolylzinc chloride, as previously described
by us [3], followed by stereoselective hydrogenation of the double bond between
positions 7 and 8 and incorporation of the azepine ring. Although considerable efforts
have been devoted to the total synthesis of iboga alkaloids over the past decades [9], the
stereocontrolled construction of this characteristic skeleton still represents a significant
and difficult challenge.

We had first studied the hydrogenation reaction of compounds 7–10 (scheme 2), but
in all cases we obtained a 1 : 1 mixture of the compounds derived from the attack over
both the diastereotopic faces [10] as judged by NMR analysis. We then decided to
separately convert amides 7–10 into the aminoalcohols 11–14 [11] by LiAlH4 reduction
and cleavage of the SEM group (TBAF, NH2(CH2)2NH2, DMF 90�C) [12] (scheme 2).
So we had the possibility to study the influence of the hydroxymethyl appendage to
guide stereoselective hydrogenation of C(7)–C(8) double bond from the endo face.
In principle this could be maximized by exploiting the favorable orientation of the
hydroxymethyl group of the endo adducts to enforce addition of hydrogen from its
own face of the molecule [13]. This was in fact the case. Catalytic hydrogenation of
the exo adducts 12 and 14 proved to be completely non-stereoselective, affording a mix-
ture of C(7) epimers that was difficult to obtain as pure compounds. Hydrogenation of
13 gave a 2 : 1 preferential addition on the endo face. The composition of the mixture
was determined on the base of the integration of the signals due to the protons at
C(17) position that appear as multiplets at � 2.56–2.38 (H-16 endo) and at 2.37–2.26
(H-16 eso). The hydrogenation of 11, on the contrary, proved to be completely stereo-
selective probably due to the close proximity of the hydroxymethyl group to the newly
created stereocentre. The concomitant removal of the benzyl group afforded a 75%
yield of compound 15 [14] (scheme 3), which was nicely characterized by the usual
spectroscopic methods.

N

Ph O

N
SEM

COOMe

N
H

NPh
OH

H

H

N
H

NPh

OH

H

OH
N

H

NPh

H
OH

N
H

NPh

N

Ph O

Br
COOMe

a, b

7-10 

12 

11 

7

8

6

3-6

Ref. 3

13 

14 

3'

Scheme 2. (a) LiAlH4, (b) TBAF, NH2(CH2)2NH2.
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The introduction of the two carbon chains, that are necessary for the completion
of the synthesis, was realized by reaction of compound 15 with the dimethylacetal
of bromoacetaldehyde in MeOH in the presence of K2CO3 to give derivative
16 that presents all the carbons necessary to elaborate the pentacyclic skeleton
of iboga alkaloids. The compound 16 was directly treated with BF3 �Et2O to induce
cyclization of the generated aldehyde at C(3) of the indole nucleus with the formation
of a styrenic double bond. The subsequent catalytic hydrogenation proved to be slug-
gish but the 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine (17) [15] could be
isolated and fully characterized.

3. Biological evaluation

The in vitro binding profile [16] of compounds 11–14, 17 gave reproducible results only
for compound 14 (table 2). Ibogaine 1 and compound 14 showed very similar binding
affinity for dopamine transporter (DAT), serotonin transporter (SERT) and K (opioid)
receptor systems, although differing with regard to NMDA.

We then elected to study the effect of compound 14 in morphine withdrawal in mice
[17]. Results (figure 2) indicate that the compound significantly (T-Test, T(2.396, 16),
p<0.05) reduced the signs of morphine withdrawal (number of jumps) [18]. No signs
of toxicity were apparent; in particular it is noteworthy that there were no tremors as
observed with ibogaine [19].

4. Conclusions

We have described the use of a MW assisted Diels–Alder reaction on neutral Al2O3 to
optimize the preparation of the diastereoisomeric mixture of 7-bromo-2-benzyl-(5 or 6)-
carbomethoxy-3-oxo-2-azabicyclo[2.2.2]oct-7-enes. The most abundant adduct 3 was
converted into the ibogaine analogue 17 by cross-coupling reaction with 2-indolylzinc
chloride followed by reduction of the methoxycarbonyl to a hydroxymethyl group,
which was crucial to address the correct stereoselective catalytic hydrogenation of the
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Table 2. Relative affinities (IC50, mM) of ibogaine (1) and 14.

Target DAT (WIN35,428) SERT (RTI-55) K (U69593) NMDA (MK801)

Ibogaine (1) 4.11 0.59 25 5.2
14 4.4 0.5 19.5 31.5
Reference Mazindol Citalopram Naloxone MK801
Drug 1.13 nM 0.9 nM 6.1 nM 4.1 nM
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C(7)–C(8) double bond. The construction of the azepine ring gave the final compound
17. The in vitro evaluation demonstrated that only compound 14, which is unfortu-
nately derived from the less abundant bicyclo adduct 6, possesses an antiwithdrawal
effect, a reduced toxicity and in particular a reduced tremorgenic effect, in comparison
with ibogaine. The position and orientation of the hydroxymethyl group seems to be
crucial for the beneficial effect on the binding affinity [20]. As a final remark, these
results highlight once again that nature continues to be a source of inspiration in the
design of simplified new pharmacologically active compounds. This kind of approach
permits us to overcome the troubles connected with the use of combinatorial chemistry
in drug discovery.
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