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Abstract The purported efficacy of ibogaine for the 
treatment of drug dependence may be due in part to 
an active metabolite. Ibogaine undergoes first pass 
metabolism and is O-demethylated to I2-hydroxy- 
ibogamine (12-OH ibogamine). Radioligand binding 
assays were conducted to identify the potency and 
selectivity profiles for ibogaine and 12-OH ibogamine. 
A comparison of 12-OH ibogamine to the primary mol- 
ecular targets identified previously for ibogaine demon- 
strates that the metabolite has a binding profile that is 
similar, but not identical to the parent drug. Both ibo- 
gaine and 12-OH ibogamine demonstrated the highest 
potency values at the cocaine recognition site on the 
5-HT transporter. The same rank order (12-OH 
ibogamine > ibogaine), but lower potencies were 
observed for the [3H]paroxetine binding sites on the 5- 
HT transporter. Ibogaine and 12-OH ibogamine were 
equipotent at vesicular monoamine and dopamine 
transporters. The metabolite demonstrated higher 
affinity at the kappa-l receptor and lower affinity at 
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the NMDA receptor complex compared to the parent 
drug. Quantitation of the regional brain levels of ibo- 
gaine and 12-OH ibogamine demonstrated micromo- 
lar concentrations of both the parent drug and 
metabolite in rat brain. Drug dependence results from 
distinct, but inter-related neurochemical adaptations, 
which underlie tolerance, sensitization and withdrawal. 
Ibogaine’s ability to alter drug-seeking behavior may 
be due to combined actions of the parent drug and 
metabolite at key pharmacological targets that modu- 
late the activity of drug reward circuits. 

Key words Ibogaine . 12-Hydroxyibogamine 
Ligand binding Neuroreceptors . Neurotransporter . 
Drug dependence 

Introduction 

The potential for deriving new psychotherapeutic med- 
ications from natural sources has led to renewed inter- 
est in rain forest plants for the development of 
anti-addiction medications. Ibogaine is a rain forest 
alkaloid found in the root of Tabernanthe Zboga 
(Apocynaceae family), a shrub that grows in West 
Central Africa. Ibogaine is used by native peoples 
in low doses to combat fatigue, hunger and thirst, and 
at high doses for its hallucinogenic properties in reli- 
gious rituals. Ibogaine has been claimed by members 
of American and European addict self-help groups to 
promote long-term drug abstinence from addictive 
substances, including psychostimulants, opiates and 
alcohol (for review, Popik et al. 1995). The purported 
efficacy is based on anecdotal reports that after a 
single dose of ibogaine, symptoms associated with 
cocaine and opioid withdrawal are eliminated and 
drug “craving” is inhibited for extended periods of 
time (Sisko 1993; Lotsof 1995). These findings are sup- 
ported by preclinical animal studies which demonstrate 
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that ibogaine decreased morphine and cocaine self- 
administration (Glick et al. 199 1, 1994; Cappendijk 
et al. 1994; Sershen et al. 1994) and blocked some of 
the symptoms of naloxone-precipitated withdrawal 
(Dzoljic et al. 1988; Glick et al. 1992; Cappendijk 
et al. 1993). Ibogaine is centrally active and at high 
doses produces adverse effects, including tremors and 
hallucinations (Popik et al. 1995). The development of 
ibogaine as an anti-addiction drug has been hindered 
due to uncertainties over potential neurotoxicity 
(O’Hearn and Molliver 1993; Touchette 1993). While 
ibogaine has a variety of CNS effects that are dose- 
related, the pharmacological targets underlying the 
physiological and psychological actions of ibogaine are 
not completely understood. 

Ibogaine interacts with multiple targets within the 
C‘NS, including dopaminergic, cholinergic, gluta- 
matergic, opioidergic and serotonergic systems (Popik 
et al. 1995). Radioligand binding surveys of ibogaine 
in rat brain demonstrated micromolar potencies for the 
dopamine (DA) transporter (Sershen et al. 1992) 
kappa-l and mu opioid receptors, alpha-l adrenergic 
receptors and voltage-dependent sodium channels 
(Dcecher et al. 1992; Sweetnam et al. 1995). Ibogaine 
11~ low affinity for muscarinic receptor subtypes 
(Sweetnam et al. 1995) and competitively inhibits 
[‘H]MK-801 binding to the NMDA receptor complex 
(Popik et al. 1994; Mash et al. 1995a). Ibogaine pos- 
sesses moderate affinity for putative sigma, receptors 
(Bowen et al. 1995; Mach et al. 1995). Ibogaine admin- 
istrations cause a 5-HT behavioral syndrome in rats, 
suggesting an interaction with serotonergic targets 
(i’opik et al. 1995). These multi-site interactions with 
:I diverse grouping of neuropharmacological targets 
contribute to the wide spectrum of CNS activities. 
Recent studies have suggested that some of the neu- 
robehavioral and physiological aftereffects of ibogaine 
may be mediated by a long-lasting metabolite. The prin- 
cipal metabolite of ibogaine has been identified in 
humans and primates as 12-hydroxyibogamine (12-OH 
ibogamine; Hearn et al. 1995a; Mash et al. 1995b). In 
the present study, we used radioligand binding assays 
to compare the potencies of ibogaine and 12-OH 
ibogamine at neuroreceptors and neurotransporters to 
help define the molecular mechanisms of action that 
may account for ibogaine’s anti-addictive properties. 

Materials and methods 

Neurological tissue specimens 

Human neuropathological tissue specimens were obtained at rou- 
tine autopsy from accidental death victims (males; age range 2046 
years: autolysis times 13 -21 h). Brain tissue specimens were frozen 
:knd stored at - 70 “C until the day of assay. For binding assays, 
tlic region of interest (Table 1) was dissected and membrane 
llomogenates were prepared by homogenizing tissue in ice-cold lig- 
alId-specific buffer with a Brinkman polytron (!5 s. setting 3). 

II 

Membrane homogenates were centrifuged and washed to remove 
endogenous ligand. 

Ligand binding assays 

Radioligands were commercially available from NEN/Dupont 
(Boston, Mass.) or Amersham Corp. (Arlington Heights, Ill.) 
with the exceptions of [‘*‘I]iodovinyltetrabenazine and [’ ‘I]IOXY 
which were custom synthesized and radiolabeled by Dr. Hank Kung 
(University of Pennsylvania) and Dr. Richard Rothman (Addiction 
Research Center/NIDA), respectively. Ibogaine and 12.OH 
ibogamine were obtained from sa. Omnichem, Belgium. BIT 
(2-@-ethoxybe~~zyl)-l-diethylaminoethyl-5-isothiocyanatobenz- 
imidiazole-HCI) and FIT (N-phenyl-N-[I-[2-(4-isothiocyanato- 
phenyl) ethyl-4-piperidinyl] propanamide) were synsthesized in the 
Laboratory of Medicinal Chemistry, NIDDK, Bethesda, Md.). All 
other unlabeled drugs were purchased from Research Biochemicals 
(Natick, Ma.). 

A summary of the radioligands used in competition assays with 
ibogaine and 12-OH ibogamine is shown in Table I. All binding 
assays were conducted as described previously (see Table I for ref- 
erences). CHO cells stably transfected with genes for each mus- 
carinic receptor subtype were prepared for ligand binding screens 
at ml- m5 receptor subtypes as described previously (Ferrari-Dileo 
et al. 1994). The ability ofibogaine and 12-OH ibogamme to inhibit 
binding to neuroreceptors or transporters was first assessed at doses 
of 100 nM and IO PM. Positive controls were routinely assayed in 
parallel using specilic drugs with known afhnities (Table I ). Assay 
tubes were incubated under the specitied conditions and Liltercd 
through Whatman 934AH lilters on Milliporc manifolds. 
Nonspecific binding was defined as the cpm bound in the presence 
of a saturatmg concentration of an established competing Ii&and. 
All binding assays demonstrated a total signal of at least 2000 dpm 
with at least 60 ~90’%, specific binding for each radioligand. Ibogaine 
and 12.OH ibogamine were considered active at the defined recep- 
tor site if there was 50’!‘,, or higher inhibition at a concentration of 
IO PM. To determine potency values accurately. full competition 
curves were obtained at relevant binding sites using IO I5 concen- 
trations of ibogame or l2-OH tbogamine. Ltgand competition data 
were analyzed using the DRUG program of EHDA/LIGAND 
(Biosoft, Elsevier). 

Quantitative gas chromatography/mass spectrometry (GC/MS) 

Using GCIMS, the concentrations of ibogaine and 12.OH 
ibogamine were determined in brain specimens of rats treated 
with a single dose of ibogaine (50mg/kg PO) and killed at the 
times indicated. Briefly, brain tissue was diluted with I’%, NaCl 
(I: I), homogenized (30 s) and sonicated (5 min) The alkaloids 
were extracted from the tissue homogenate using a solvent extrac- 
tion under basic conditions with Di-ibogame as an internal 
standard and derivatization of the metabolitc to an ethyl ether 
as described pre\,iously (Hearn et al. 1995a, b) The GC/MS was 
operated in the full scan electron ionization mode scamring from 
M/Z 45 to 450 at 1 s/scan. Ibogaine and its principal metabolite 
were identified by subjecting brain extracts to full scan electron 
impact GC/MS on Finnegan 4521 (quadrupole) and Finnegan 
ITS-40 (ion trap) mass spectrometers. Compound identification was 
based upon comparison of retention times and fragmentation pat- 
terns obtained from authentic standards (sa. Omnichem, Belgium). 
Ion ratios for the molecular ion of ibogaine (m/z 310). and l2- 
OH ibogamine ethyl ether (m/z - 324) to that of the internal 
standard 0Dq-methyl-ibogainc (m/z 313) were subjected to 
least squares linear rcgrcssion versus concentration. The resulting 
standard curves were linear (r’ = 0.999) and reproducible. 
Intraassay coefficients of variation (0) in brain were I. I Y for 
ibogdine and 4.0’%) for 12.OH ibogamine. Limits of detection and 
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Table 1 Survey of ibogaine and 12-OH ibogamine targets in radioligand binding assays 

Binding sate Radioligand Nonspecific Tissue Reference 

Arkrmint~rgrc~ 
Al receptor 
Al receptor 

Cholinergic 
M t receptor 
Mz receptor 
M3 receptor 
M4 receptor 
Ms receptor 
Vesicular transporter 
Dopov7inergic 

Dr receptor 
Dz receptor 

[jH]NECA R-PIA 
[“H]CGS-21680 CGS2 1680 

[-‘H]NMS 
[‘H]NMS 
[‘HINMS 
fH]NMS 
[‘HINMS 
[‘H]Vesamicol 

QNB 
QNB 

;E 
QNB 
(p) ABV 

D) receptor 
DA transporter 

Vesicular transporter 

Glurmnntrrgic 
NMDA receptor complex 

Norudrenergic 
NE transporter 
Opioiriergic 
Kappa r 
Kappa? 
Sigma, 
Serotonrrgic 
S-HT~A receptor 
5-HT2 receptor 
5-HT transporter 

[‘H]SCH23390 
[3H]YM-091S1-2 
[‘H]Haloperidol 
[‘HI-(+)-7-OH-DPAT 
[“51]RTI-121 
[sH]Mazindol 
[‘“‘I]-TBZ 

(+) Butaclamol 
(+) Butaclamol 
(+) Butaclamol 
(+) Butaclamol 
( - ) Cocaine 
( - ) Cocaine 
Tetrdbenazine 

(+) MK801 

[‘H]Nisoxetine Desipramine 

[‘H]U69593 
[‘““I]-IOXY 
[‘HI-(+)-Pentazocine 

Naloxone 
Naloxone 
(+) Pentazocine 

Vesicular transporter 

[3H]-8-OH-DPAT 
[jH]RP 62203 
[“51]RTI-5S 
[‘H]Paroxetine 
[“‘I]-TBZ 

Serotonin ’ 
Ketanserin 
( ~ ) Cocaine 
Paroxetine 
Tetrabenazine 

quantitation were 5 rig/g for both ibogaine and derivatized 12.OH 
ibopamine in brain, respectively. 

Results 

The results of the radioligand binding survey of the 
potencies of ibogaine and 12-OH ibogamine at various 
neuroreceptors and neurotransporters are shown in 
Table 2. At a 10 uM dose, both ibogaine and 12-OH 
ibogamine competed for at least 50% of the total bind- 
ing to the DA transporter, 5-HT transporter and vesic- 
ular monoamine transporter. In addition, ibogaine was 
active in displacement assays at the cholinergic vesic- 
ular transporter and NMDA receptor complex, while 
12-OH ibogamine was more potent than ibogaine at 
the kappa-l receptor. Both ibogaine and its primary 
metabolite were nonselective and weak inhibitors of 
binding to ml-m5 muscarinic receptor subtypes. The 
results of the present study confirm and extend previ- 
ous reports that ibogaine and its primary metabolite 
do not interact with biogenic amine receptors, includ- 
ing dopaminergic (Deecher et al. 1992; Sweetnam 
et al. 1995) and serotonergic receptor subtypes 

- 

Caudate 
Caudate 

CHO-ml 
CHO-m2 
CHO-m3 
CHO-m4 
CHO-m5 
Caudate 

Caudate 
Caudate 
Caudate 
NW. Act. 
Caudate 
Caudate 
Caudate 

Caudate 

Dentate Gyrus 

Insular Ctx 
Caudate 
Cerebellum 

Hippocampus 
Frontal Ctx 
Occipital Ctx 
Occipital Ctx 
Occipital Ctx 

(Bruns et al. 1986) 
(Jarvis et al. 1989) 

(Ferrari-DiLeo et al. 1994) 
(Ferrari-DiLeo et al. 1994) 
(Ferrari-DiLeo et al. 1994) 
(Ferrari-DiLeo et al. 1994) 
(Ferrari-DiLeo et al. 1994) 
(Kish et al. 1990) 

(DeKeyser et al. 1989) 
(Jarvie et al. 1987) 
(Whitaker and Seeman 1977) 
(Burris et al. 1994) 
(Staley et al. 1995) 
(Staley et al. 1995) 
(Kung et al. 1994) 

(Popik et al. 1994) 

(Tejani-Butt et al. 1990) 

(Neck et al. 1988) 
(Ni et al. 1993) 
(Zabetian et al. 1994) 

(Gozlan et al. 1983) 
(Malgouris et al. 1993) 
(Staley et al. 1994) 
(Backstrom et al. 1989) 
(Kung et al. 1994) 

(Deecher et al. 1992). Neither ibogaine nor 12-OH 
ibogamine demonstrated significant binding affinity at 
the norepinephrine transporter, sigma- 1 binding sites 
or adenosine (Al and A2) receptor subtypes assayed 
in human brain. 

The significance of micromolar interactions of ibo- 
gaine and 12-OH ibogamine with various radioligand 
binding sites was related to the concentration of par- 
ent drug and metabolite in brain. Regional brain lev- 
els of ibogaine and 12-OH ibogamine were measured 
in rat cerebral cortex, striatum, brainstem and cere- 
bellum at 15 min, 1 and 2 h post-drug administration. 
The results demonstrate that ibogaine is rapidly 
detected in brain following oral administration 
(Fig. 1). The metabolite was detected at the earliest 
time point (15 min), consistent with first pass metabo- 
lism of the parent drug (Hearn et al. 1995a). 
Administration of ibogaine (50 mg/kg PO) in rodents 
resulted in levels of ibogaine and 12-OH ibogamine 
ranging from 4 to 17 uM and 1 to 17 PM, respectively. 
It is interesting to note that over the 2-h time period 
the concentration of 12-OH ibogamine increased lo- 
fold across all regions examined, while the levels of the 
parent drug decreased (cortex, brainstem) or stayed 
the same (striatum, cerebellum). These data provide 
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Table 2 Empirical screen of the inhibitory potency of ibogaine and 
l2-OH ibogamine 

Inactive (10 PM) test dose” Activeb 

Ibogaine 
[3H]SCH 23390 
[‘H]YMOl915-2 
[‘HI-(+)-7-OH-DPAT 
[-‘H]Haloperidol 
r’H1NECA 
j$iCGS 2 1680 
[3H]Nisoxetine 
[-‘HI-8-OH-DPAT 
[JH]RP62203 
[JH]NMS-CHOm5 
[‘HI-(+)-Pentazocine 
[“~]U69593 
[‘q]IoxY 
I?-Oif fhog~~mine 
[‘H]SCH 23390 
[$]YM 01915-2 
[“HI-(+)-7-OH-DPAT 
tH]-8-OH-DPAT 
[‘H]RP62203 
[‘H]Vesamicol 
[‘HINECA 
[‘HlHaloperidol 
[‘Hl-(+)-Pentazocine 
~‘H)CGS21680 
[‘H]Nisoxetine 
[‘H]MK-801 
(‘~~I]IOXY 

[3H]MK-80 1 
[3H]Mazindol 
[‘251]RTI-121 
[‘251]-TBZ 
[iz51]RTI-55/Benztropine 
[3H]Paroxetine 
[3H]Vesamicol 
[‘HINMS-CHO-ml 
[3H]NMS-CHO-m2 
[3H]NMS-CHO-m3 
[3H]NMS-CHO-m4 

[3H]Mazindol 
[“51]RTI-121 
[“‘I]-TBZ 
[“‘I]RTI-55/Benztropine 
[‘HlParoxetine 
[3H]U69593 
[3H]NMS-CHO-ml 
[3H]NMS-CHO-m2 
[3H]NMS-CHO-m3 
[‘HINMS-CHO-m4 
[3H]NMS-CHO-m5 

“Inactive - Ibogaine or l2-OH ibogamine competed for bmding 
with an lCso value greater than IO PM 
hActivc lbogaine or l2-OH ibogamine Inhibited binding with an 
lC<,, value equal to or less than IO PM 

further evidence that micromolar activities of ibogaine 
and the O-demethylated metabolite are relevant for 
defining binding site activities. 

Ibogaine and 12-OH ibogamine exhibited distinct 
neurotransporter and neuroreceptor binding profiles 
(Fig. 2). The highest potency value observed in 
this activity screen was for the inhibition of [‘251]RTI- 
55 binding by 12-OH ibogamine at cocaine recogni- 

Fig. 1 Regional brain levels of 
ibogaine (Irfi) and 12-OH 
ibogamine (riglzf). Regional 
samples of rat cerebral cortex, 
striatum, cerebellum and 
brainstem were assayed at the 
Indicated times post- 
adminstration of ibogaine (50 
mg/kg PO). Data represent 
the average values from 
individual animals (n = 4) 
assayed in duplicate 

h rm 
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tion sites on the 5-HT transporter (I&J = 40.7 f 11.6 
nM). Interestingly, 12-OH ibogamine competed 
for [3H]paroxetine binding to the 5-HT transporter 
with 20-fold lower potency (I(& = 0.9 + 0.06 PM) 
than at RTI-55 binding sites. In keeping with 
the demonstrated rank order of potency, 12-OH 
ibogamine was IO-fold more potent than ibogaine at 
displacing both [1251]RTI-55 and [3H]paroxetine bind- 
ing (Table 3). The metabolite also was more potent 
than the parent drug at the kappa-l receptor and dis- 
placed binding in the low micromolar range. Ibogaine 
displayed 4- and 6-fold higher potencies than the 
metabolite at kappa-2 receptors and at MK-801 sites 
on the NMDA receptor complex, respectively. 
Ibogaine and 12-OH ibogamine were equipotent at the 
DA transporter and vesicular monoamine transporter 
and displaced binding in the low micromolar range 
(Fig. 2, Table 3). 

Discussion 

The present study provides additional insights into the 
ligand binding profiles for ibogaine and its primary 
metabolite that may be relevant for understanding the 
putative anti-addictive properties. Comparison of the in 
vitro binding profiles for ibogaine and 12-OH 
ibogamine demonstrates that they interact with neuro- 
transporters and subclasses of neurotransmitter recep- 
tors, which are associated with the reinforcing actions 
of cocaine and opiates. Ibogaine and 12-OH ibogamine 
are active at specific pharmacological targets that have 
been linked to the phenomena of sensitization and tol- 
erance. While micromolar potencies of ibogaine and its 
desmethyl metabolite may be considered ancillary 
for defining primary sites and mechanisms of 
action (Sweetnam et al. l995), our pharmacokinetic 
studies demonstrate that both ibogaine and 12-OH 
ibogamine are found in rat brain following oral admin- 
istrations (50 mg/kg) at levels ranging from 1 to 17 PM. 
The pharmacological relevance of micromolar brain 

Time (min.) Time (min.) 
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Fig. 2 Potency of ibogaine and 12-OH ibogamine for binding to 
CNS targets. Various concentrations of ibogaine (upper panel) and 
12.OH ibogamine (hotton? prr~l) were incubated in the presence of 
[‘?]RTI-55 (10 pM)/I pM benztropine. ~‘~51]RTI-121 (50 PM), 
[‘HIMK-801 (2 nM), [“‘I]TBZ (1 nM) and [-H]U69593 (1 nM) with 
membrane homogenates from the human brain. The data shown 
are the mean + SE of at least three independent experiments. 
Potency values were obtained using DRUG (EBDA/LIGAND) 

concentrations of ibogaine and 12-OH ibogamine is 
supported by previous studies which have demonstrated 
that doses of ibogaine within the range of 30-80 mglkg 
are active in behavioral studies designed to assess rein- 
forcing effects, tolerance and withdrawal symptoms 

Table 3 Inhibitory potency of 
ibogaine and 12-OH 
ibogamine. The values shown 

Binding target (Radioligand) 

associated with psychomotor stimulants and opiates. 
Ibogaine has been shown to reduce signs of morphine 
withdrawal (Glick et al. 1992), antagonize cocaine- 
induced locomotor stimulation (Sershen et al. 1992) and 
inhibit cocaine (Cappendijk and Dzoljic 1993; Glick 
et al. 1994) and morphine self-administration (Glick 
et al. 1994). 

At present, the metabolism and intracerebral dispo- 
sition of ibogaine in the brain is not completely known. 
Both the parent drug and metabolite have high hep- 
tanelphosphate buffer partition coefficients (Zetler 
et al. 1972), indicating their ability to penetrate the 
blood-brain barrier and consistent with the rapid entry. 
of ibogaine into the brain shown here. Partitioning of 
the parent drug into brain lipid may serve as a slow 
release storage “depot”. Sequestration of iboga alka- 
loids into lipophilic compartments in brain, may result 
in lower concentrations of the parent drug and metabo- 
lite in the extracellular fluid. The more polar nature of 
12-OH ibogamine suggests that there may actually be 
higher extracellular fluid concentrations of the metabo- 
lite as compared to ibogaine. If ibogaine is O-demethy- 
lated to 12-OH ibogamine in brain, then it is reasonable 
to conclude that the slow elimination of a CNS trapped 
polar metabolite may contribute to some of the 
reported aftereffects of single dose administrations of 
ibogaine in humans (Mash et al. 1995b). However, fur- 
ther studies are needed to estimate precisely the intrac- 
erebral distribution of ibogaine and 12-OH ibogamine 
and their relative concentrations in extracellular Auid 
as compared to brain extracts. 

The metabolite 12-OH ibogamine inhibited binding 
of the cocaine congener [1251]RTI-55 to the 5-HT trans- 
porter with the highest potency reported to date. 
Interestingly, ibogaine and 12-OH ibogamine exhibited 
15- to 20-fold lower potency for inhibition of paroxe- 
tine binding to the 5-HT transporter. The disparity in 
the potency values for binding to the 5-HT transporter 
suggests that 12-OH ibogamine and ibogaine may rec- 
ognize a binding domain on the transporter that is pre- 
ferred by cocaine-like, but not structurally dissimilar 

Ibogaine 

IGo (PM) nH 

l2-OH I bogamine 

IGo (PM) nH 

4.11 f. 0.45 1.10 3.35 + 0.50 1.01 
14.63 k 4.41 0.98 29.45 + 9.13 1.05 

represent the mean + SE of 
the I& value (PM) from 34 
independent experiments each performed in triplicate 

Dopuniinergic 
DA transporter (RTI-55) 
Vesicular transporter (TBZ) 
Glutar~~alergic 
NMDA receptor (MK-801) 

Opioidergic 
Kappa1 (U69593) 
Kappa2 (IOXY) 
Serotonergic 
5-HT transporter (RTI-55) 

(paroxetine) 
Vesicular transporter (TBZ) 

5.20 t 0.24 0.90 31.41 k 5.43 1.05 

25.00 + 0.57 1.09 4.24 IL 0.28 1.05 
23.80 k 7.10 0.99 92.30 + 9.21 1.03 

0.59 f 0.09 0.80 0.04 ?I 0.01 0.16 
9.30 + 1.70 1.15 0.90 f 0.06 1.10 
2.23 $0.22 0.75 4.99 t 0.48 0.98 
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transport inhibitors. Previous studies have shown that 
there are multiple cocaine-like recognition sites associ- 
ated with the 5-HT transporter (Rothman et al. 1994; 
Staley et al. 1994). Interestingly, paroxetine has been 
shown to label two RTI-55 recognition sites on the 5- 
HT transporter with distinct affinities (Rothman et al. 
1994). These observations provide additional evidence 
for the non-identity of binding sites associated with the 
5-HT transporter and suggest that ibogaine and its 
desmethyl metabolite may be useful probes for dis- 
secting their functional relevance. 

In keeping with its potency at the 5-HT transporter, 
previous studies have shown that 12-OH ibogamine 
elevates extracellular levels of 5-HT in microdialysis 
assays following intravenous injections in rats (Mash 
et al. 1995b). Preliminary studies have suggested that 
drugs (fluoxetine, sertraline) that enhance 5-HT 
neurotransmission are indicated for the treatment of 
heroin and cocaine dependence (Batki et al. 1994; 
Kleber 1995; Walsh et al. 1994). Chronic drug use is 
associated with a 5-HT deficit form of 5-HT dysregu- 
lation, causing depressed mood and alterations in affect 
and cognition (Baumann et al. 1993, 1995; Levy et al. 
1994; Parsons et al. 1995). Improvements in mood and 
cognition have been associated with the alleviation of 
drug “craving”, which is a predictor of drug relapse. 
Mood measures are also important indicators of the 
effect of treatment for cocaine abuse, and some aspects 
of cravings intersect with depression and anxiety 
(Covi et al. 1995). These observations suggest that the 
interaction of a longer acting metabolite with the 5- 
I!T transporter may be relevant for explaining the 
~<i~>rted ability of ibogaine to rapidly alleviate dys- 
phoria and improve mood and cognition in abstinent- 
drug abusers. 

While ibogaine and 12-OH ibogamine displayed 
high affinity for the 5-HT transporter, both the parent 
and metabolite failed to demonstrate significant 
potency for binding to the 5-HTi* and 5-HT2 recep- 
tors assayed in human brain. These results conflict with 
:I previous report, which demonstrated potencies in the 
low micromolar range for ibogaine binding to the 5- 
HT2 receptor subtype (Sweetnam et al. 1995). In this 
study, C3H] ketanserin was used to label the 5-HT2 
receptor subtype. It is known that this ligand binds 
with nanomolar affinity to the vesicular monoamine 
transporter (Darchen et al. 1988). This inconsistency 
between studies may reflect species differences or the 
cWrlapping affinities of [3H] ketanserin for the 5-HT2 
receptor and vesicular monoamine transporter. The 
lack of affinity of ibogaine for 5-HT2 receptors shown 
here may indicate that the hallucinogenic activities of 
the drug may be mediated by either a different popu- 
lation of 5-HT receptor or that ibogaine does not fit 
the binding site profile of classical hallucinogens 
(Glennon 1990). 

The rewarding effects of abused drugs are mediated 
by activation of the mesolimbic DA system (reviewed 
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by Di Chiara 1995). In particular, the DA transporter 
is a primary substrate for the reinforcing potential of 
psychostimulants. Ibogaine recognizes the cocaine 
binding site on the DA transporter and inhibits 
DA uptake in rat brain with a potency value corre- 
sponding to its affinity for the cocaine binding 
site (M. Baumann, personal communication). These 
findings suggest that ibogaine and 12-OH ibogamine 
may interact with the DA transporter in a similar man- 
ner to cocaine, but with lo-fold lower potency (Staley 
et al. 1994). Ibogaine and its primary metabolite may 
function as “cocaine partial agonists” at the DA trans- 
porter by blocking the access of cocaine and decreas- 
ing the rapid elevation of DA mediating the rewarding 
effects of cocaine. This explanation may account for 
ibogaine’s ability to decrease cocaine place preference 
and inhibit cocaine self-administration (Cappendijk 
et al. 1994; Glick et al. 1994; Sershen et al. 1994). 
Ibogaine may affect DA transmission also by promot- 
ing a redistribution of DA synaptosomal pools in addi- 
tion to its blockade of DA transporter function. 
Ibogaine has been shown to increase DA efflux from 
the cytoplasmic pool by reversal of the DA transporter 
(Harsing et al. 1994). Since ibogaine displays moder- 
ate affinity at the vesicular monoamine transporter, 
it may regulate the distribution of DA between vesic- 
ular and cytoplasmic pools. If ibogaine blocks vesicu- 
lar storage of DA, the higher concentrations of 
cytoplasmic DA would lead to reversal of the DA trans- 
porter. In keeping with this “redistribution” hypothe- 
sis, ibogaine pretreatment significantly reduced 
the cocaine-induced rise in DA levels in the nucleus 
accumbens measured by in vivo voltametry (Broderick 
et al. 1994). 

Mesolimbic DA neurotransmission is known to be 
modulated by tonic activation of the mu and kappa 
opioid receptors within the limbic reward sectors of the 
striatum. According to the model by Spanagel and 
Shippenberg (1992), opioids tonically regulate 
mesolimbic DAergic transmission through two oppos- 
ing mechanisms that regulate DA release via distinct 
actions at cell body and terminal fields. Activation of 
mu receptors increase, whereas kappa agonists decrease 
DA release in the nucleus accumbens. Ibogaine and 12- 
OH ibogamine have demonstrated micromolar 
affinities for mu and kappa opioid receptors (Pearl 
et al. 1995) suggesting an additional mechanism for 
regulating the DAergic reward pathway. We have 
confirmed that ibogaine and 12-OH ibogamine have 
affinities in the low micromolar range at kappa recep- 
tor subtypes in agreement with previous reports 
(Deecher et al. 1992; Reid et al. 1994; Pearl et al. 1995; 
Sweetnam et al. 1995). In the present study, the 
O-demethylated metabolite displayed the highest 
potency at kappa-l receptor sites assayed in human 
brain membranes. The role of specific kappa receptor 
subtypes within limbic reward pathways of the human 
brain are at present unknown. The selective kappa-l 
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agonist U-69593 attenuates cocaine-induced behavioral 
sensitization (Heidbreder et al. 1993) while the 
non-selective kappa antagonist nor-binaltorphimine 
enhances morphine-induced sensitization (Spanagel 
et al. 1992; Spanagel and Shippenberg 1993). Ibogaine 
and 12-OH ibogamine may regulate DA release via 
their interactions with kappa receptors (Reid et al. 
1994). The actions of the parent drug and metabolite 
at kappa receptors may be important for understand- 
ing the anti-craving aftereffects of ibogaine. While 
kappa agonists are markedly dysphoric, the additional 
and potent actions of 12-OH ibogamine at the 5-HT 
transporter may significantly elevate mood, and thereby 
limit the potential adverse effects of kappa receptor 
activation. 

The ability of ibogaine to inhibit [3H]-MK801 bind- 
ing to the NMDA receptor complex (Popik et al. 1994; 
Mash et al. 1995b; Sweetnam et al. 1995) may be of 
relevance for understanding the anti-addictive actions 
of ibogaine. MK-801 has been reported to block sen- 
sitization (reverse tolerance) to the behavioral activat- 
ing effects of cocaine and amphetamine (Karler et al. 
1989; Pudiak and Bozarth 1993). The administration 
of MK-801 attenuates both the development of toler- 
ance to the analgesic effect of morphine and morphine 
dependence (Trujillo and Akil 199 1,1995). On the basis 
of these converging lines of evidence, Skolnick and 
coworkers suggest that ibogaine’s ability to modify 
drug-seeking behavior results primarily from their 
blockade of NMDA receptor-coupled cation channels 
(Popik et al. 1994, 1995). Previously, we have shown 
that 12-OH ibogamine is less potent than ibogaine at 
inhibiting [“HI MK-801 binding in assays of human 
brain striatum and cerebellum (Mash et al. 1995b). The 
effects of MK-801 on sensitization and withdrawal 
described above are compatible with the idea that some 
of the anti-addictive properties of ibogaine may result 
from an interaction with NMDA receptor-coupled 
cation channels. Since 12-OH ibogamine inhibits 
[‘HIMK-801 binding with a lower potency as compared 
to ibogaine, it is unlikely that the channel activity of 
12-OH ibogamine is additive to ibogaine. This obser- 
vation may indicate that some of the acute effects of 
ibogaine administration, but not the extended 
aftereffects, may be linked to its activities at MK-801 
binding sites. It has been suggested also that ibogaine’s 
interaction with NMDA receptor-coupled cation chan- 
nels may contribute to the adverse effects of the drug, 
including the psychotropic (PCP-like actions) and high 
dose neurotoxic changes in cerebellar Purkinje cells 
(Sweetnam et al. 1995). Further studies are needed to 
address the functional significance of NMDA-receptor 
coupled channel blockade to ibogaine’s purported anti- 
addiction properties. 

In the present study, radioligand binding assays were 
conducted with 12-OH ibogamine to identify the mol- 
ecular mechanism(s) accounting for ibogaine’s putative 
long-lasting anti-addictive properties. The results 

demonstrate that ibogaine and its primary metabolite 
have pharmacologic sites of action associated with bio- 
genie amine systems, opioidergic and glutamatergic 
synapses. Dependence on psychostimulants and opi- 
ates results from distinct, but inter-related processes 
which include tolerance, sensitization and withdrawal 
(Nestler and Hyman 1993, Nestler 1994). The neuro- 
chemical substrates underlying drug tolerance and 
reverse tolerance (sensitization), as well as the expres- 
sion of withdrawal symptoms are likely to be unique 
and separate processes occurring within discrete 
cellular locations and affecting distinct molecular tar- 
gets. The multi-target CNS actions of ibogaine and its 
primary metabolite suggest that simultaneous modu- 
lation of two or more neural mechanisms may be a 
more effective approach for designing anti-addiction 
agents. 
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